Cientista brasileira faz viagem virtual ao centro da Terra


Chegar à Lua, a quase 400 mil quilômetros de distância, ou envio de um robô a marte pode parecer mais fácil do que conhecer a composição e o funcionamento do interior da Terra, uma esfera quase perfeita com 12 mil quilômetros (km) de diâmetro.


Cientista brasileira faz viagem virtual ao centro da Terra
Análises científicas mais modernas têm feito avançar a imagem que se tem de como seria o centro da Terra. [Imagem: Revista Pesquisa Fapesp]
Minerais profundos
Os furos de sondagem chegaram a apenas 12 km de profundidade, mal vencendo a crosta, a camada mais superficial.
Como não podem examinar diretamente o interior do planeta, os cientistas estão se valendo de simulações emcomputador para entender como se forma e se transforma a massa sólida de minerais das camadas mais profundas do interior do planeta quando submetida a pressões e temperaturas centenas de vezes mais altas que as da superfície.
Como resultado, estão identificando minerais que se formam milhares de quilômetros abaixo da superfície e reconhecendo a possibilidade de existir um volume de água superior a um oceano disperso na espessa massa de rochas sob nossos pés.
Viagem virtual ao centro da Terra
A física brasileira Renata Wentzcovitch, pesquisadora da Universidade de Minnesota, Estados Unidos, é responsável por descobertas fundamentais sobre o interior do planeta empregando, justamente, técnicas matemáticas ecomputacionais, que ela desenvolve desde 1990.
Cientista brasileira faz viagem virtual ao centro da Terra
A perovskita transforma-se em pós-perovskita no interior da Terra, eventualmente decompondo-se em óxidos simples próximo ao núcleo de planetas gigantes, como Saturno ou Júpiter. [Imagem: Revista Pesquisa Fapesp]
Em 1993, ela elucidou a estrutura atômica da perovskita a altas pressões; a perovskita é o mineral mais abundante no manto inferior, a camada mais ampla do interior do planeta, com uma espessura de 2.200 km, bem menos conhecida que as camadas mais externas.
Em 2004 Renata e sua equipe identificaram a pós-perovskita, mineral que resulta da transformação da perovskita submetida a pressões e temperaturas centenas de vezes mais altas que as da superfície, como nas regiões mais profundas do manto.
Os resultados ajudaram a explicar as velocidades das ondas sísmicas, geradas pelos terremotos, que variam de acordo com as propriedades dos materiais que atravessam e representam um dos meios mais utilizados para entender a composição do interior da Terra.
Agora novos estudos da pesquisadora indicaram que a pós-perovskita tende a se dissociar em óxidos elementares, como óxido de magnésio e óxido de silício, à medida que a pressão e a temperatura aumentam ainda mais, como no interior dos planetas gigantes, Júpiter, Saturno, Urano e Netuno.
"Estamos com a faca e o queijo na mão para descobrir a constituição e as diferenças de composição do interior de planetas", diz.
Zona de transição
Por meio de trabalhos como os de Renata e seu grupo agora se começa a ver melhor como os minerais do interior da Terra tendem a perder elasticidade e se tornarem mais densos quando submetidos a alta pressão e temperatura, que aumentam com a profundidade.
Em razão do aumento da pressão é que se acredita que a densidade do centro da Terra - formado por uma massa sólida de ferro a temperatura próxima a 6.000 graus Celsius (ºC) - seja de quase 13 gramas por centímetro cúbico, quatro vezes maior que a da superfície, indicando que em um mesmo volume cabem quatro vezes mais átomos.
Segundo Renata, as técnicas que desenvolveu podem prever o comportamento de estruturas cristalinas complexas, formadas por mais de 150 átomos. "Ao longo do manto terrestre, as estruturas cristalinas dos minerais são diferentes, mas a composição química das camadas do interior da Terra parece ser uniforme."
Sem direito à ficção e apegados a métodos rigorosos, como a análise dos resultados de cálculos teóricos, de experimentos em laboratório, de levantamentos geológicos e da velocidade das ondas sísmicas, físicos, geofísicos, geólogos e geoquímicos estão abrindo o planeta e ampliando o conhecimento sobre as regiões de massa rochosa compacta abaixo do limite de 600 km, que marca uma região mais densa do manto, a chamada zona de transição, a partir da qual se conhecia muito pouco.
Cientista brasileira faz viagem virtual ao centro da Terra
sonda espacial GOCE permitiu recentemente traçar o geóide, como é conhecido o formato da Terra. Os resultados abrem caminho para novos entendimentos da dinâmica e da composição das camadas internas do planeta. [Imagem: ESA/HPF/DLR]
Terremotos e jazidas minerais
Os especialistas acreditam que seus estudos permitirão entender melhor - e talvez um dia prever - os terremotos e os tsunamis, além de identificar jazidas minerais mais facilmente do que hoje, se conseguirem detalhar a composição e os fenômenos das regiões inacessíveis do interior do planeta.
Mesmo das camadas mais externas estão emergindo novidades, que desfazem a antiga imagem do interior do planeta como uma sequência de camadas regulares como as de uma cebola.
Em 2003, por meio de levantamentos mundiais detalhados, pesquisadores dos Estados Unidos começaram a ver irregularidades da crosta, cuja espessura varia de 20 a 68 km, deixando as regiões mais finas mais sujeitas a terremotos e, as mais espessas, a colapsos.
Muitos estudos em andamento se concentram no manto, uma espessa camada sólida, levemente flexível, que se deforma muito lentamente, como o piche.
Furos na Terra
A não ser nas raras ocasiões em que o magma emerge por meio dos vulcões, trazendo material do manto, os estudos são feitos de modo indireto, por meio do monitoramento da velocidade das ondas sísmicas, e é difícil saber diretamente o que se passa no manto.
Os japoneses querem ir além do recorde de 12 km já perfurados e chegar ao manto usando um navio com uma sonda semelhante à de um petroleiro.
(Inovação Tecnológica)

Postar um comentário

0 Comentários